Drive Team Excellence with Deep Learning with TensorFlow Corporate Training

Empower your teams with expert-led on-site/in-house or virtual/online Deep Learning with TensorFlow Training through Edstellar, a premier Deep Learning with TensorFlow training company for organizations globally. Our customized training program equips your employees with the skills, knowledge, and cutting-edge tools needed for success. Designed to meet your specific training needs, this Deep Learning with TensorFlow group training program ensures your team is primed to drive your business goals. Transform your workforce into a beacon of productivity and efficiency.

Deep Learning with TensorFlow is the application of deep learning techniques using the TensorFlow framework, an open-source library developed by Google for building and deploying machine learning models. The course helps professionals by enabling them to leverage advanced artificial intelligence techniques to analyze vast amounts of data, uncover valuable insights, and innovate across various domains. Deep Learning with TensorFlow training empowers professionals to develop innovative solutions, optimize processes, and drive teams growth.

Edstellar's virtual/onsite Deep Learning with TensorFlow training course provides customization and employs cutting-edge methodologies. Our trainers are highly regarded for their expertise in delivering the Deep Learning with TensorFlow instructor-led training course and possess vast experience in navigating the intricacies of the framework for building and deploying neural networks, optimizing models, and interpreting results.

Key Skills Employees Gain from Deep Learning with TensorFlow Training

Deep Learning with TensorFlow skills corporate training will enable teams to effectively apply their learnings at work.

  • TensorFlow Documentation Analysis
    TensorFlow Documentation Analysis involves interpreting and understanding TensorFlow's documentation to effectively implement machine learning models. This skill is important for data scientists and ML engineers, as it ensures accurate model development and troubleshooting.
  • Neural Network Architecture Design
    Neural Network Architecture Design involves creating optimal structures for neural networks to solve specific problems. This skill is important for AI developers and data scientists, as it enhances model performance and efficiency in tasks like image recognition and natural language processing.
  • Practical Implementation with TensorFlow
    Practical Implementation With TensorFlow involves applying TensorFlow to build, train, and deploy machine learning models. This skill is important for data scientists and AI engineers, as it enables them to create effective solutions for real-world problems.
  • Hyperparameter and Parameter Optimization
    Hyperparameter and Parameter Optimization involves fine-tuning model settings to enhance performance. This skill is important for data scientists and machine learning engineers to ensure accurate, efficient models.
  • Deep Learning Experimentation
    Deep Learning Experimentation involves designing, testing, and refining neural network models. This skill is important for data scientists and AI engineers to optimize performance and innovate solutions.
  • Transfer Learning
    Transfer Learning is a machine learning technique where knowledge gained from one task is applied to a different but related task. This skill is important for data scientists and AI engineers as it enhances model efficiency, reduces training time, and improves performance on limited data.

Key Learning Outcomes of Deep Learning with TensorFlow Training Workshop for Employees

Edstellar’s Deep Learning with TensorFlow training for employees will not only help your teams to acquire fundamental skills but also attain invaluable learning outcomes, enhancing their proficiency and enabling application of knowledge in a professional environment. By completing our Deep Learning with TensorFlow workshop, teams will to master essential Deep Learning with TensorFlow and also focus on introducing key concepts and principles related to Deep Learning with TensorFlow at work.


Employees who complete Deep Learning with TensorFlow training will be able to:

  • Analyze TensorFlow documentation and resources to implement deep learning algorithms
  • Design customized neural network architectures tailored to specific problem domains
  • Implement theoretical knowledge into practical solutions using TensorFlow
  • Optimize hyperparameters and model parameters to enhance performance
  • Troubleshoot and resolve common issues encountered during model training and evaluation
  • Modify pre-trained models for transfer learning and domain-specific applications
  • Experiment with various deep learning techniques and frameworks to innovate solutions

Key Benefits of the Deep Learning with TensorFlow Group Training

Attending our Deep Learning with TensorFlow classes tailored for corporations offers numerous advantages. Through our Deep Learning with TensorFlow group training classes, participants will gain confidence and comprehensive insights, enhance their skills, and gain a deeper understanding of Deep Learning with TensorFlow.

  • Equips the team with the techniques to develop and deploy deep learning models using TensorFlow
  • Empowers professionals with the skills to optimize neural network architectures for improved performance
  • Provides team with insights into advanced activation functions and regularization techniques
  • Instills ideas in professionals for leveraging deep learning for image and speech recognition applications
  • Develops required skills in teams to compute gradients efficiently

Topics and Outline of Deep Learning with TensorFlow Training

Our virtual and on-premise Deep Learning with TensorFlow training curriculum is divided into multiple modules designed by industry experts. This Deep Learning with TensorFlow training for organizations provides an interactive learning experience focused on the dynamic demands of the field, making it relevant and practical.

  1. Overview of TensorFlow and its ecosystem
    • History and development of TensorFlow
    • Key features and functionalities
    • Comparison with other deep learning frameworks
    • TensorFlow ecosystem
  2. Installation and setup
    • Different installation methods
    • Setting up virtual environments
    • GPU and TPU support
  3. Basics of tensor operations
    • Understanding tensors
    • Creating and manipulating tensors
    • Common tensor operations
    • Introduction to data types and shapes
  1. Fundamentals of neural networks
    • Biological inspiration and analogy
    • Perceptrons: the building block of neural networks
    • Activation functions and their role
    • Learning and training process
  2. Building a simple neural network in TensorFlow
    • Defining the network architecture
    • Implementing forward pass and backpropagation
    • Training the network on a dataset
  3. Understanding layers and neurons
    • Different types of layers 
    • Activation functions specific to different layers
    • Hyperparameters and their impact on network performance
  1. Role of activation functions in neural networks
    • Introducing non-linearity into the network
    • Mapping input values to output values
    • Choosing appropriate functions for different scenarios
  2. Popular activation functions
    • Sigmoid function and its limitations
    • ReLU (Rectified Linear Unit) and its variations 
    • Tanh function and its properties
    • Softmax function for multi-class classification
  3. Selecting appropriate activation functions for different tasks
    • Choosing based on data distribution and task type
    • Understanding the impact of different activations
  1. Convolutional neural networks (CNNs) for image recognition
    • Convolutional layers and pooling operations
    • Architectures for image classification
    • Applications in object 
  2. Recurrent neural networks (RNNs) for sequence modeling
    • Understanding sequence data and its challenges
    • Vanilla RNNs, LSTMs, and GRUs
    • Applications in machine translation, text generation, etc.
  3. Generative Adversarial Networks (GANs) for generating synthetic data
    • Generative model and discriminative model in a GAN
    • Training process and challenges
    • Applications in image generation
  1. Image classification and object detection
    • Preprocessing and preparing image data
    • Training and evaluating models for different tasks
    • Real-world applications
  2. Natural Language Processing (NLP) tasks such as sentiment analysis and text generation
    • Text preprocessing and tokenization
    • Word embeddings and language models
    • Applications in sentiment analysis
  3. Recommendation systems using collaborative filtering:
    • Matrix factorization and user-item interactions
    • Building recommender systems
    • Applications in e-commerce
  1. Understanding gradients and their role in optimization
    • The concept of gradients and their calculation
    • Relating gradients to learning and weight updates
    • Visualization of gradients
  2. Automatic differentiation in TensorFlow
    • TensorFlow's built-in functionality for calculating gradients
    • Simplifying the process of backpropagation
    • Using tf.GradientTape for efficient gradient calculation
  3. Gradient descent optimization algorithms
    • Stochastic Gradient Descent (SGD) and its variants 
    • Tuning learning rate and other hyperparameters
    • Monitoring loss function and optimizing for convergence
  1. Building and training single-layer perceptrons
    • Implementing logic gates (AND, OR, etc.) using perceptrons
    • Training on simple datasets and visualizing results
    • Limitations of single-layer perceptrons
  2. Extending to Multi-Layer Perceptrons (MLPs) for more complex tasks
    • Adding hidden layers and increasing network capacity
    • Understanding the backpropagation process in MLPs
    • Training MLPs on more complex datasets
  3. Practical applications and case studies
    • Using MLPs for image classification
    • Real-world examples and case studies

Who Can Take the Deep Learning with TensorFlow Training Course

The Deep Learning with TensorFlow training program can also be taken by professionals at various levels in the organization.

  • Deep Learning Engineers
  • Data Scientists
  • Product Managers
  • Machine Learning Engineers
  • Research Scientists
  • Software Developers
  • AI Researchers
  • Computer Vision Engineers
  • NLP Engineers
  • Data Engineers
  • Predictive Modelers
  • Robotics Engineers

Prerequisites for Deep Learning with TensorFlow Training

Professionals with a basic understanding of the Python programming language can take up the Deep Learning with TensorFlow training course.

Share your Corporate Training Requirements

  • United States+1
  • United Kingdom+44
  • India (भारत)+91
  • Australia+61
  • Canada+1
  • Afghanistan (‫افغانستان‬‎)+93
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Ascension Island+247
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Bangladesh (বাংলাদেশ)+880
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Eswatini+268
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Iran (‫ایران‬‎)+98
  • Iraq (‫العراق‬‎)+964
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • Macedonia (FYROM) (Македонија)+389
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Nepal (नेपाल)+977
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • North Korea (조선 민주주의 인민 공화국)+850
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Pakistan (‫پاکستان‬‎)+92
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358
Valid number

Delivering Training for Organizations across 100 Countries and 10+ Languages

Corporate Group Training Delivery Modes
for Deep Learning with TensorFlow Training

At Edstellar, we understand the importance of impactful and engaging training for employees. As a leading Deep Learning with TensorFlow training provider, we ensure the training is more interactive by offering Face-to-Face onsite/in-house or virtual/online sessions for companies. This approach has proven to be effective, outcome-oriented, and produces a well-rounded training experience for your teams.

 Virtual trainig

Edstellar's Deep Learning with TensorFlow virtual/online training sessions bring expert-led, high-quality training to your teams anywhere, ensuring consistency and seamless integration into their schedules.

With global reach, your employees can get trained from various locations
The consistent training quality ensures uniform learning outcomes
Participants can attend training in their own space without the need for traveling
Organizations can scale learning by accommodating large groups of participants
Interactive tools can be used to enhance learning engagement
 On-site trainig

Edstellar's Deep Learning with TensorFlow inhouse training delivers immersive and insightful learning experiences right in the comfort of your office.

Higher engagement and better learning experience through face-to-face interaction
Workplace environment can be tailored to learning requirements
Team collaboration and knowledge sharing improves training effectiveness
Demonstration of processes for hands-on learning and better understanding
Participants can get their doubts clarified and gain valuable insights through direct interaction
 Off-site trainig

Edstellar's Deep Learning with TensorFlow offsite group training offer a unique opportunity for teams to immerse themselves in focused and dynamic learning environments away from their usual workplace distractions.

Distraction-free environment improves learning engagement
Team bonding can be improved through activities
Dedicated schedule for training away from office set up can improve learning effectiveness
Boosts employee morale and reflects organization's commitment to employee development

Explore Our Customized Pricing Package
for
Deep Learning with TensorFlow Corporate Training

Need the cost or quote for onsite, in-house, or virtual instructor-led corporate Deep Learning with TensorFlow training? Get a customized proposal that fits your team's specific needs.

Get a Group Training Quote
Select the Number of Participants
Please select an option or fill in the custom field.
Is the Requirement Only for the Below Course?
Please select at least one course.
Add the List of Training Workshops
Option 1

    No. of Courses selected: 0

    Clear


      Please select the course

      Option 2
      Upload a CSV

      Send us your Training Requirements in 3 Easy steps

      1. Download the training requirement
        template
      2. Add the required training workshops
      3. Upload to get a quick quote or email it to contact@edstellar.com

      Option 3

      Looking for a one-time pricing option for all your annual training requirements?

      View Corporate Training Packages
      Select the Option that best Describes Your Requirement





      Please select an option or choose from the recurring options.

      Review Your Training Details and Submit

      Review your Requirements

      Course Name

      Deep Learning with TensorFlow Training

      1. No of Participants

      2. Type of training Requested

      3. No of Batches

      1

      Request a Training Quote
      • United States+1
      • United Kingdom+44
      • India (भारत)+91
      • Australia+61
      • Canada+1
      • Afghanistan (‫افغانستان‬‎)+93
      • Albania (Shqipëri)+355
      • Algeria (‫الجزائر‬‎)+213
      • American Samoa+1
      • Andorra+376
      • Angola+244
      • Anguilla+1
      • Antigua and Barbuda+1
      • Argentina+54
      • Armenia (Հայաստան)+374
      • Aruba+297
      • Ascension Island+247
      • Australia+61
      • Austria (Österreich)+43
      • Azerbaijan (Azərbaycan)+994
      • Bahamas+1
      • Bahrain (‫البحرين‬‎)+973
      • Bangladesh (বাংলাদেশ)+880
      • Barbados+1
      • Belarus (Беларусь)+375
      • Belgium (België)+32
      • Belize+501
      • Benin (Bénin)+229
      • Bermuda+1
      • Bhutan (འབྲུག)+975
      • Bolivia+591
      • Bosnia and Herzegovina (Босна и Херцеговина)+387
      • Botswana+267
      • Brazil (Brasil)+55
      • British Indian Ocean Territory+246
      • British Virgin Islands+1
      • Brunei+673
      • Bulgaria (България)+359
      • Burkina Faso+226
      • Burundi (Uburundi)+257
      • Cambodia (កម្ពុជា)+855
      • Cameroon (Cameroun)+237
      • Canada+1
      • Cape Verde (Kabu Verdi)+238
      • Caribbean Netherlands+599
      • Cayman Islands+1
      • Central African Republic (République centrafricaine)+236
      • Chad (Tchad)+235
      • Chile+56
      • China (中国)+86
      • Christmas Island+61
      • Cocos (Keeling) Islands+61
      • Colombia+57
      • Comoros (‫جزر القمر‬‎)+269
      • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
      • Congo (Republic) (Congo-Brazzaville)+242
      • Cook Islands+682
      • Costa Rica+506
      • Côte d’Ivoire+225
      • Croatia (Hrvatska)+385
      • Cuba+53
      • Curaçao+599
      • Cyprus (Κύπρος)+357
      • Czech Republic (Česká republika)+420
      • Denmark (Danmark)+45
      • Djibouti+253
      • Dominica+1
      • Dominican Republic (República Dominicana)+1
      • Ecuador+593
      • Egypt (‫مصر‬‎)+20
      • El Salvador+503
      • Equatorial Guinea (Guinea Ecuatorial)+240
      • Eritrea+291
      • Estonia (Eesti)+372
      • Eswatini+268
      • Ethiopia+251
      • Falkland Islands (Islas Malvinas)+500
      • Faroe Islands (Føroyar)+298
      • Fiji+679
      • Finland (Suomi)+358
      • France+33
      • French Guiana (Guyane française)+594
      • French Polynesia (Polynésie française)+689
      • Gabon+241
      • Gambia+220
      • Georgia (საქართველო)+995
      • Germany (Deutschland)+49
      • Ghana (Gaana)+233
      • Gibraltar+350
      • Greece (Ελλάδα)+30
      • Greenland (Kalaallit Nunaat)+299
      • Grenada+1
      • Guadeloupe+590
      • Guam+1
      • Guatemala+502
      • Guernsey+44
      • Guinea (Guinée)+224
      • Guinea-Bissau (Guiné Bissau)+245
      • Guyana+592
      • Haiti+509
      • Honduras+504
      • Hong Kong (香港)+852
      • Hungary (Magyarország)+36
      • Iceland (Ísland)+354
      • India (भारत)+91
      • Indonesia+62
      • Iran (‫ایران‬‎)+98
      • Iraq (‫العراق‬‎)+964
      • Ireland+353
      • Isle of Man+44
      • Israel (‫ישראל‬‎)+972
      • Italy (Italia)+39
      • Jamaica+1
      • Japan (日本)+81
      • Jersey+44
      • Jordan (‫الأردن‬‎)+962
      • Kazakhstan (Казахстан)+7
      • Kenya+254
      • Kiribati+686
      • Kosovo+383
      • Kuwait (‫الكويت‬‎)+965
      • Kyrgyzstan (Кыргызстан)+996
      • Laos (ລາວ)+856
      • Latvia (Latvija)+371
      • Lebanon (‫لبنان‬‎)+961
      • Lesotho+266
      • Liberia+231
      • Libya (‫ليبيا‬‎)+218
      • Liechtenstein+423
      • Lithuania (Lietuva)+370
      • Luxembourg+352
      • Macau (澳門)+853
      • Macedonia (FYROM) (Македонија)+389
      • Madagascar (Madagasikara)+261
      • Malawi+265
      • Malaysia+60
      • Maldives+960
      • Mali+223
      • Malta+356
      • Marshall Islands+692
      • Martinique+596
      • Mauritania (‫موريتانيا‬‎)+222
      • Mauritius (Moris)+230
      • Mayotte+262
      • Mexico (México)+52
      • Micronesia+691
      • Moldova (Republica Moldova)+373
      • Monaco+377
      • Mongolia (Монгол)+976
      • Montenegro (Crna Gora)+382
      • Montserrat+1
      • Morocco (‫المغرب‬‎)+212
      • Mozambique (Moçambique)+258
      • Myanmar (Burma) (မြန်မာ)+95
      • Namibia (Namibië)+264
      • Nauru+674
      • Nepal (नेपाल)+977
      • Netherlands (Nederland)+31
      • New Caledonia (Nouvelle-Calédonie)+687
      • New Zealand+64
      • Nicaragua+505
      • Niger (Nijar)+227
      • Nigeria+234
      • Niue+683
      • Norfolk Island+672
      • North Korea (조선 민주주의 인민 공화국)+850
      • Northern Mariana Islands+1
      • Norway (Norge)+47
      • Oman (‫عُمان‬‎)+968
      • Pakistan (‫پاکستان‬‎)+92
      • Palau+680
      • Palestine (‫فلسطين‬‎)+970
      • Panama (Panamá)+507
      • Papua New Guinea+675
      • Paraguay+595
      • Peru (Perú)+51
      • Philippines+63
      • Poland (Polska)+48
      • Portugal+351
      • Puerto Rico+1
      • Qatar (‫قطر‬‎)+974
      • Réunion (La Réunion)+262
      • Romania (România)+40
      • Russia (Россия)+7
      • Rwanda+250
      • Saint Barthélemy+590
      • Saint Helena+290
      • Saint Kitts and Nevis+1
      • Saint Lucia+1
      • Saint Martin (Saint-Martin (partie française))+590
      • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
      • Saint Vincent and the Grenadines+1
      • Samoa+685
      • San Marino+378
      • São Tomé and Príncipe (São Tomé e Príncipe)+239
      • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
      • Senegal (Sénégal)+221
      • Serbia (Србија)+381
      • Seychelles+248
      • Sierra Leone+232
      • Singapore+65
      • Sint Maarten+1
      • Slovakia (Slovensko)+421
      • Slovenia (Slovenija)+386
      • Solomon Islands+677
      • Somalia (Soomaaliya)+252
      • South Africa+27
      • South Korea (대한민국)+82
      • South Sudan (‫جنوب السودان‬‎)+211
      • Spain (España)+34
      • Sri Lanka (ශ්‍රී ලංකාව)+94
      • Sudan (‫السودان‬‎)+249
      • Suriname+597
      • Svalbard and Jan Mayen+47
      • Sweden (Sverige)+46
      • Switzerland (Schweiz)+41
      • Syria (‫سوريا‬‎)+963
      • Taiwan (台灣)+886
      • Tajikistan+992
      • Tanzania+255
      • Thailand (ไทย)+66
      • Timor-Leste+670
      • Togo+228
      • Tokelau+690
      • Tonga+676
      • Trinidad and Tobago+1
      • Tunisia (‫تونس‬‎)+216
      • Turkey (Türkiye)+90
      • Turkmenistan+993
      • Turks and Caicos Islands+1
      • Tuvalu+688
      • U.S. Virgin Islands+1
      • Uganda+256
      • Ukraine (Україна)+380
      • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
      • United Kingdom+44
      • United States+1
      • Uruguay+598
      • Uzbekistan (Oʻzbekiston)+998
      • Vanuatu+678
      • Vatican City (Città del Vaticano)+39
      • Venezuela+58
      • Vietnam (Việt Nam)+84
      • Wallis and Futuna (Wallis-et-Futuna)+681
      • Western Sahara (‫الصحراء الغربية‬‎)+212
      • Yemen (‫اليمن‬‎)+967
      • Zambia+260
      • Zimbabwe+263
      • Åland Islands+358
      Valid number
      We've received your enquiry. Our team will be in touch soon.
      Oops! Something went wrong while submitting the form.
      Starter
      120 licences

      Tailor-Made Licenses with Our Exclusive Training Packages!

      View Package

      64 hours of training (includes VILT/In-person On-site)

      Tailored for SMBs

      Growth
      320 licences

      Tailor-Made Licenses with Our Exclusive Training Packages!

      View Package

      160 hours of training (includes VILT/In-person On-site)

      Ideal for growing SMBs

      Enterprise
      800 licences

      Tailor-Made Licenses with Our Exclusive Training Packages!

      View Package

      400 hours of training (includes VILT/In-person On-site)

      Designed for large corporations

      Custom
      Unlimited licenses

      Tailor-Made Licenses with Our Exclusive Training Packages!

      View Package

      Unlimited duration

      Designed for large corporations

      Edstellar: Your Go-to Deep Learning with TensorFlow Training Company

      Experienced Trainers

      Our trainers bring years of industry expertise to ensure the training is practical and impactful.

      Quality Training

      With a strong track record of delivering training worldwide, Edstellar maintains its reputation for its quality and training engagement.

      Industry-Relevant Curriculum

      Our course is designed by experts and is tailored to meet the demands of the current industry.

      Customizable Training

      Our course can be customized to meet the unique needs and goals of your organization.

      Comprehensive Support

      We provide pre and post training support to your organization to ensure a complete learning experience.

      Multilingual Training Capabilities

      We offer training in multiple languages to cater to diverse and global teams.

      Testimonials

      What Our Clients Say

      We pride ourselves on delivering exceptional training solutions. Here's what our clients have to say about their experiences with Edstellar.

      "Edstellar's IT Service Management training has been transformative. Our IT teams have seen significant improvements through multiple courses delivered at our office by expert trainers. Excellent feedback has prompted us to extend the training to other teams."

      Liam Anderson
      HR Head,
      A Global Technology Company
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15

      Get Your Team Members Recognized with Edstellar’s Course Certificate

      Upon successful completion of the Deep Learning with TensorFlow training course offered by Edstellar, employees receive a course completion certificate, symbolizing their dedication to ongoing learning and professional development.

      This certificate validates the employee's acquired skills and is a powerful motivator, inspiring them to enhance their expertise further and contribute effectively to organizational success.

      Edstellar Certificate Template

      We have Expert Trainers to Meet Your Deep Learning with TensorFlow Training Needs

      The instructor-led training is conducted by certified trainers with extensive expertise in the field. Participants will benefit from the instructor's vast knowledge, gaining valuable insights and practical skills essential for success in Access practices.

      Other Related Corporate Training Courses